Warm-season Thermodynamically-driven Rainfall Prediction with Support Vector Machines
نویسندگان
چکیده
Dynamic numerical weather prediction models have been designed to deal with large-scale, highly predictable midlatitude atmospheric patterns. However, the capability of these models to simulate thermodynamically driven warm-season rainfall events, such as afternoon airmass thunderstorm formation in subtropical summers, is highly limited. Current methods of addressing this issue have included ensemble numerical weather prediction simulations, where an ensemble mean of multiple simulations with varied model physics is used as an improved prediction over any individual ensemble member. These approaches still yield only modest skill primarily due to inherent biases in each ensemble member. As such, the current research will utilize machine learning to combine logically ensemble members into a single prediction of warm-season rainfall. In particular, a support vector machine classification scheme that employs members of a 30 member ensemble as predictors and observed rainfall patterns as a predictand will be formulated on multiple warm-season rainfall days in an effort to develop an improved prognosis of warm-season rainfall that can be implemented in operational meteorology forecasts. The primary goal of the work is to obtain a statistically significant improvement of predictive skill over currently utilized ensemble member approaches.
منابع مشابه
A Comparative Study of Extreme Learning Machines and Support Vector Machines in Prediction of Sediment Transport in Open Channels
The limiting velocity in open channels to prevent long-term sedimentation is predicted in this paper using a powerful soft computing technique known as Extreme Learning Machines (ELM). The ELM is a single Layer Feed-forward Neural Network (SLFNN) with a high level of training speed. The dimensionless parameter of limiting velocity which is known as the densimetric Froude number (Fr) is predicte...
متن کاملWarm season heavy rainfall events over the Huaihe River Valley and their linkage with wintertime thermal condition of the tropical oceans
Furthermore, the interannual variation of summer precipitation is attributable to the variation of heavy rainfall frequency over the HRV. The heavy rainfall frequency, in turn, is influenced by sea surface temperature anomalies (SSTAs) over the north Indian Ocean, equatorial western Pacific, and the tropical Atlantic. The tropical SSTAs modulate the HRV heavy rainfall events by influencing atmo...
متن کاملSeparating Well Log Data to Train Support Vector Machines for Lithology Prediction in a Heterogeneous Carbonate Reservoir
The prediction of lithology is necessary in all areas of petroleum engineering. This means that to design a project in any branch of petroleum engineering, the lithology must be well known. Support vector machines (SVM’s) use an analytical approach to classification based on statistical learning theory, the principles of structural risk minimization, and empirical risk minimization. In this res...
متن کاملApplication of Machine Learning Approaches in Rainfall-Runoff Modeling (Case Study: Zayandeh_Rood Basin in Iran)
Run off resulted from rainfall is the main way of receiving water in most parts of the World. Therefore, prediction of runoff volume resulted from rainfall is getting more and more important in control, harvesting and management of surface water. In this research a number of machine learning and data mining methods including support vector machines, regression trees (CART algorithm), model tree...
متن کاملA prediction distribution of atmospheric pollutants using support vector machines, discriminant analysis and mapping tools (Case study: Tunisia)
Monitoring and controlling air quality parameters form an important subject of atmospheric and environmental research today due to the health impacts caused by the different pollutants present in the urban areas. The support vector machine (SVM), as a supervised learning analysis method, is considered an effective statistical tool for the prediction and analysis of air quality. The work present...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013